中级会计回归分析法实例

守护你的对我的依赖
  • 回答数

    5

  • 浏览数

    10308

首页> 会计职称> 中级会计回归分析法实例

5个回答默认排序
  • 默认排序
  • 按时间排序

懒惰又嘴拙

已采纳

直线回归是用直线回归方程表示两个数量变量间依存关系的统计分析方法,属双变量分析的范畴。 1. 直线回归方程的求法 (1)回归方程的概念: 直线回归方程的一般形式是�0�6(音y hat)=a+bx,其中x为自变量,一般为资料中能精确测定和控制的量,Y为应变量,指在x规定范围内随机变化的量。a为截距,是回归直线与纵轴的交点,b为斜率,意为x每改变一个单位时,�0�6的变化量。 (2)直线回归方程的求法 确定直线回归方程利用的是最小二乘法原理,基本步骤为: 1)先求 b,基本公式为b=lxylxx=SSxySSxx ,其中lxy为X,Y的离均差积和,lxx为X的离均差平方和; 2)再求a,根据回归方程 a等于Y的均值减去x均值与b乘积的差值。 (3)回归方程的图示: 根据回归方程,在坐标轴上任意取相距较远的两点,连接上述两点就可得到回归方程的图示。应注意的是,连出的回归直线不应超过x的实测值范围. 2. 回归关系的检验 回归关系的检验又称回归方程的检验,其目的是检验求得的回归方程在总体中是否成立,即是否样本代表的总体也有直线回归关系。方法有以下两种: (1)方差分析 其基本思想是将总变异分解为SS回归和SS剩余,然后利用F检验来判断回归方程是否成立。 (2)t检验 其基本思想是利用样本回归系数b与总体均数回归系数�0�8进行比较来判断回归方程是否成立,实际应用中因为回归系数b的检验过程较为复杂,而相关系数r的检验过程简单并与之等价,故一般用相关系数r的检验来代替回归系数b的检验。 3. 直线回归方程的应用 (1)描述两变量之间的依存关系; 利用直线回归方程即可定量描述两个变量间依存的数量关系 (2)利用回归方程进行预测; 把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。 (3)利用回归方程进行统计控制 规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。 4. 应用直线回归的注意事项 (1)做回归分析要有实际意义; (2)回归分析前,最好先作出散点图; (3)回归直线不要外延。

37评论

长路本就坎坷

两个变量的相关关系最简单的形式就是直线相关,其直线方程称为一元一次方程。即:� y=a+bx� 式中,y为因变量,x为自变量,a与b是特定参数。a为直线的截距,b为直线斜率又称回归系数。参数a、b的确定方法有随手画法、最小平方法,统计中使用最多的是最小平方法,用这种方程求出的回归直线方程是原资料的最适合的方程,也就是这条直线是代表x与y之间关系最优的一条直线。� 若用(x,y)表求几对观察值,yc为估计值,则拟合的回归直线方程的形式为:� yc=a+bx� 用最小平方法求回归直线,就是要使观察值y与估计值yc的离差平方和最小,即直线的误差平方和最小,也就是Q需要取最小值,来确定参数a和b。即:� Q=∑(y-a-bx)2=最小值� 得到� 解出参数a、b,并代入回归直线方程,得到一个确定的回归直线方程。该回归直线方程的意义是,自变量每增加1各单位,因变量平均变动b个单位。� 回归直线的特征:� 1、回归直线是一条平均线� 2、观察值与回归值之差的平方和最小,即∑(y-yc)2取最小值。� 3、观察值y与回归值yc之差的和为零,即∑(y-yc)=0� 4、回归直线yc=a+bx必定经过x与y的交点即点(x,y) y=a+bx�。� 5、回归直线的走向由b决定。� 当b>0,直线走向是由左下角至右上角,两变量为线性正相关;� 当b<0,直线走向是由左上角至右下角,两变量为线性负相关;� 当b=0,直线平行于x轴,说明x与y之间无线性相关关系。

20评论

青春到迟暮

相关计算公式为:a=[∑Xi2∑Yi-∑Xi∑XiYi][n∑Xi2-(∑Xi)2],b=[n∑XiYi-∑Xi∑Yi][n∑Xi2-(∑Xi)2]。

回归直线法是根据若干期业务量和资金占用的历史资料,运用最小平方法原理计算不变资金和单位产销量所需变动资金的一种资金习性分析方法。

回归分析法主要解决的问题:

1、确定变量之间是否存在相关关系,若存在,则找出数学表达式。

2、根据一个或几个变量的值,预测或控制另一个或几个变量的值,且要估计这种控制或预测可以达到何种精确度。

26评论

我就静静的看着你装逼

可以用来做数据报表等。拓展:在应用回归分析方法于财务成本分析中,值得注意自变量与因变量之间,必须存在与所采用的数学模式相一致的因果关系。在相互有关的事物之间,必然存在着某种数量上的关系。回归分析就是利用这种相关的关系来作分析预测的方法,如果某一现象y在数量上的增减主要只决定于另一现象x的增减,两者之间的关系是y=a+bx的模式,在这个模式中因变量y只决定于一个自变量x,而且两者之间用来表示相互。

76评论

守护你的对我的依赖

回归分析(regressionanalysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。方差齐性线性关系效应累加变量无测量误差变量服从多元正态分布观察独立模型完整(没有包含不该进入的变量、也没有漏掉应该进入的变量)误差项独立且服从(0,1)正态分布。现实数据常常不能完全符合上述假定。因此,统计学家研究出许多的回归模型来解决线性回归模型假定过程的约束。研究一个或多个随机变量Y1 ,Y2 ,…,Yi与另一些变量X1、X2,…,Xk之间的关系的统计方法。又称多重回归分析。通常称Y1,Y2,…,Yi为因变量,X1、X2,…,Xk为自变量。回归分析是一类数学模型,特别当因变量和自变量为线性关系时,它是一种特殊的线性模型。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,这叫一元线性回归,即模型为Y=a+bX+ε,这里X是自变量,Y是因变量,ε是随机误差,通常假定随机误差的均值为0,方差为σ^2(σ^2大于0)σ2与X的值无关。若进一步假定随机误差遵从正态分布,就叫做正态线性模型。一般的情形,差有k个自变量和一个因变量,因变量的值可以分解为两部分:一部分是由自变量的影响,即表示为自变量的函数,其中函数形式已知,但含一些未知参数;另一部分是由于其他未被考虑的因素和随机性的影响,即随机误差。当函数形式为未知参数的线性函数时,称线性回归分析模型;当函数形式为未知参数的非线性函数时,称为非线性回归分析模型。当自变量的个数大于1时称为多元回归,当因变量个数大于1时称为多重回归。 回归分析的主要内容为:①从一组数据出发确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。②对这些关系式的可信程度进行检验。③在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。④利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。 均匀设计特点:试验设计的目标,就是要用最少的试验取得关于系统的尽可能充分的信息。均匀设计即可以较好地实现这一目标,尤其对多因素、多水平的试验。它可保证试验点具有均匀分布的统计特性,可使每个因素的每个水平做一次且仅做一次试验,任两个因素的试验点点在平面的格子点上,每行每列有且仅有一个试验点。它着重在试验范围内考虑试验点均匀散布以求通过最少的试验来获得最多的信息,因而其试验次数比正交设计明显的减少,使均匀设计特别适合于多因素多水平的试验和系统模型完全未知的情况。

161评论

相关问答