pearson系数经济师

小伙我挺直腰板岂会服软姑娘我天生傲骨岂会服输
  • 回答数

    6

  • 浏览数

    7910

首页> 职业资格> pearson系数经济师

6个回答默认排序
  • 默认排序
  • 按时间排序

柠檬猪肺

已采纳

皮尔森相关系数(Pearson correlation coefficient)也称皮尔森积矩相关系数(Pearson product-moment correlation coefficient) ,是一种线性相关系数。皮尔森相关系数是用来反映两个变量线性相关程度的统计量。相关系数用r表示,其中n为样本量,分别为两个变量的观测值和均值。r描述的是两个变量间线性相关强弱的程度。r的绝对值越大表明相关性越强。

24评论

你以为你是我的弱点

皮尔森系数 皮尔森相关系数皮尔森相关系数(Pearson correlation coefficient) 也称皮尔森积矩相关系数(Pearson product-moment correlation coefficient) ,是一种线性相关系数。皮尔森相关系数是用来反映两个变量线性相关程度的统计量。相关系数用r表示,其中n为样本   量,分别为两个变量的观测值和均值。r描述的是两个变量间线性相关强弱的程度。r的绝对值越大   表明相关性越强。

116评论

瞅瞅你的脸瞎了我的眼

pearson相关系数和spearman相关系数的区别:连续数据,正态分布,线性关系,用pearson相关系数是最恰当,当然用spearman相关系数也可以,就是效率没有pearson相关系数高。上述任一条件不满足,就用spearman相关系数,不能用pearson相关系数。两个定序测量数据之间也用spearman相关系数,不能用pearson相关系数。

51评论

一看你就笑

区别:连续数据,正态分布,线性关系,用pearson相关系数是最恰当,当然用spearman相关系数也可以,效率没有pearson相关系数高。上述任一条件不满足,就用spearman相关系数,不能用pearson相关系数。两个定序测量数据之间也用spearman相关系数,不能用pearson相关系数。拓展知识:pearson相关通常是用来计算等距及等比数据或者说连续数据之间的相关的,这类数据的取值不限于整数,如前后两次考试成绩的相关就适合用pearson相关。spearman相关专门用于计算等级数据之间的关系,这类数据的特点是数据有先后等级之分但连续两个等级之间的具体分数差异却未必都是相等的,比如第一名和第二名的分数差就未必等于第二名和第三名的分数差。两次考试的排名数据适用于spearman相关。spearman相关只能计算等级数据,但pearson相关却既可以用来算等级相关,也可以算连续数据的相关,只不过一般默认用pearson相关计算连续数据的相关。在 统计学中, 以查尔斯·斯皮尔曼命名的斯皮尔曼等级相关系数,即spearman相关系数。经常用希腊字母ρ表示。 它是衡量两个变量的依赖性的 非参数 指标。 它利用单调方程评价两个统计变量的相关性。 如果数据中没有重复值, 并且当两个变量完全单调相关时,斯皮尔曼相关系数则为+1或−1。Pearson相关系数(Pearson CorrelationCoefficient)是用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系。如衡量国民收入和居民储蓄存款、身高和体重、高中成绩和高考成绩等变量间的线性相关关系。当两个变量都是正态连续变量,而且两者之间呈线性关系时,表现这两个变量之间相关程度用积差相关系数,主要有Pearson简单相关系数。参考资料:spearman相关系数_百度百科 Pearson相关系数_百度百科

138评论

闺蜜用来爱不是用来晒

相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。相关系数r的绝对值一般在8以上,认为A和B有强的相关性。3到8之间,可以认为有弱的相关性。3以下,认为没有相关性。需要指出的是相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。以上内容参考:百度百科-相关系数

13评论

人不犯贱天诛地灭

皮尔森相关系数(Pearson's Correlation)是统计学中比较重要的概念,它能够计算衡量出 2 个随机变量的相关性。注意这里的相关是线性相关!它的取值范围是 [-1, 1],其中1 表示非常正相关,-1表示非常负相关,0表示二者不存在线性相关性。它的计算方法也比较简单,就是2个随机变量的协方差除以二者的标准差的乘积。请参考博文:皮尔森相关系数

105评论

相关问答