回答数
8
浏览数
703
倚楼
编程没有捷径可言,或许天赋有点作用,但是不坚持长期练习,开发大脑,是不可能成为高手的。其次,程序语言基本上五花八门,多达上百种,到图书馆看看便知,而且很多软件自带就有一种开发语言,所以一定不可贪多。然后,主流的当然是C系语言,从C到C++到C#或者Java,这是一条基本路线,至于汇编语言除了计算机专业的人,一般不会去接触的。接下来讲讲应用范围:C语言适用于系统开发,比如操作系统,嵌入式编程,单片机编程等,比较底层;C++适用于大型桌面软件开发,几乎所有的大型桌面软件都是用C++开发出来的,由此可见,C++是一个非常强大的语言。C#适用于非计算机专业,以行业应用为主的人,因为不需要掌握太多的技巧,上手快,很受广大非计算机专业的人的欢迎,可以这么说,C#的出现改变了人们对于程序的恐惧,老少皆宜。Java就不用说了,如今风靡全球,适用于网络开发,手机开发,Java是应网络时代而生,所以学Java就是学Web开发,桌面软件还是C++的江上。,建议学习C++或者Java。
万般情愿
一般大数据的学习方式有两种:
线下脱产学习,线上视频教学。如果是0基础学员参加线下脱产班学习的话,大多数培训机构都是6个月左右的周期。
大数据的学习有一定难度,对于0基础的小白来说,一定要细心、耐心,认真听课,多多练习。大数据的薪资待遇是比较可观的,目前大数据开发招聘还是以技术为主,大数据需要学习hadoop、spark、storm、超大集群调优、机器学习、并发编程等,加米谷的具体如下:
Java,大数据基础:Linux基础、Maven基础
HDFS分布式文件系统
MapReduce分布式计算模型+Yarn分布式资源管理器+Zookeeper分布式协调服务
Hbase分布式数据 库+Hive分布式数据仓库
FlumeNG分布式数据采集系统+Sqoop大数据迁移系统
Scala大数据黄金语言+kafka分布式总线系统
SparkCore大数据计算基石+SparkSQL数据挖掘利器+SparkStreaming流式计算平台
SparkMllib机器学习平台+SparkGraphx图计算平台
大数据项目实战
涅尘
首先,大数据是一个庞大的技术体系,涉及到的内容非常多,Web前端与大数据也有比较紧密的联系,所以如果未来要进入大数据领域,从Web前端开始学起也是不错的选择。如果想学习IT技术,不如选择千锋教育,性价比远远高出其他培训机构,【感兴趣的话,点击此处免费学习一下】。作为零基础的小白,Web前端的学习门槛相对要低一些,对于计算机基础比较薄弱的初学者来说,从Web前端开始学起也是不错的选择。相对于大数据和Web开发来说,Web前端开发岗位大部分都是应用级开发岗位,所以可能会存在职业生命周期偏短的问题,所以前端开发人员应该重视自身知识结构的更新,关注前端技术的发展趋势。千锋教育拥有多年IT培训服务经验,采用全程面授高品质、高体验培养模式,合作企业达20000余家,覆盖全国一线二线城市大中小型公司,成功帮助20000余名人才实现就业。
将就太累
大数据培训学习时间一般是在4个月-5个月,每家机构有所不同,难易程度也不同,根据每个人的基础不同可能会有所差别。如需大数据培训推荐选择【达内教育】。大数据是一项比较复杂的编程语言,学习大数据开发是需要一定的编程基础,而且大数据是综合性比较高的编程语言,零基础学习大数据是比较困难,可以选择大数据培训班来学习,而且还能系统的学习大数据相关的技术知识。【达内大数据培训班】三大优势:1、大数据云计算课程体系。内容较全,技术深,涉及JavaEE架构级技术,分布式高并发技术,云计算架构技术,云计算技术,云计算架构技术等。2、提供“云计算云主机”试验环境。提供真实的大数据云计算开发部署环境,学员可以拥有几十台主机节点以完成开发部署试验。3、O2O双模式教学体验。达内强大的TMOOC+在线教学平台,为学员提供线下学习,线上辅助的双模式教学体验。感兴趣的话点击此处,免费学习一下想了解更多有关大数据培训的相关信息,推荐咨询【达内教育】。该机构已从事19年IT技术培训,并且独创教学系统,1v1督学,跟踪式学习,有疑问随时沟通。该机构26大课程体系紧跟企业需求,企业级项目,课程穿插大厂真实项目讲解,对标企业人才标准,制定专业学习计划,囊括主流热点技术,助力学员更好的学习。达内IT培训机构,试听名额限时抢购。
今朝酒
1.大数据架构的工具与组件
数据工程师更关注分析基础架构,因此所需的大部分技能都是以架构为中心的。
2.深入了解SQL和其它数据库解决方案
数据工程师需要对数据库管理系统有比较熟悉的了解,而且深入了解SQL非常重要。同样其它数据库解决方案,例如Cassandra或BigTable也须熟悉,因为不是每个数据库都是由可识别的标准来构建。
3.数据仓库和ETL工具
数据仓库和ETL经验对于数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL工具,比如StitchData或Segment都非常有用。另外,数据存储和数据检索经验同样重要,因为处理的数据量是个天文数字。
4.基于Hadoop的分析(HBase,Hive,MapReduce等)
对基于Apache Hadoop的分析有深刻理解是这个领域的一个非常必要的需求,一般情况下HBase,Hive和MapReduce的知识存储是必需的。
5.编码
说到解决方案,编码与开发能力是一个重要的优点(这也是许多职位的要求),你要熟悉Python,CC++,Java,Perl,Golang或其它语言,这会非常有价值。
6.机器学习
虽然数据工程师主要关注的是数据科学,但对数据处理技术的理解会加分,比如一些统计分析知识和基础数据建模。
半句呻吟
大数据工程师要学什么课程?没接触过大数据的人也许不知道大数据工程师是什么,更别说知道大数据工程师要学什么课程了。我们先来说下大数据工程师是做什么的吧。是负责公司互联网数据分析的一个职位,对数据库进行开发和(或)维护,需要具备超强的逻辑思维,精通各种语言,需要有相当好的毅力和耐心。光环大数据的大数据培训课程分为如下几个阶段:第一阶段:java核心学习学习内容:Java核心内容学习目标:掌握数据类型与运算符,数组、类与对象;掌握IO流与反射、多线程、JDBC。完成目标:Java多线程模拟多窗口售票,Java集合框架管理。第二阶段: JavaEE课程大纲学习内容:JavaEE核心内容学习目标:Mysql数据基础知识,Jdbc 基础概念和操作掌握HTML和CSS语法、Java核心语法完成目标:京东电商网站项目、2048小游戏。第三阶段:Linux精讲学习内容:Linux命令、文件、配置,Shell、Awk、Sed学习目标:搭建负载均衡、高可靠的服务器集群,可大网站并发访问量,保证服务不间断完成目标:Linux环境搭建、shell脚本小游戏 贪吃蛇。第四阶段:Hadoop生态体系学习内容:HDFS、MapReduce、Hive、Sqoop、Oozie学习目标:掌握HDFS原理、操作和应用开发,掌握分布式运算、Hive数据仓库原理及应用。完成目标:微博数据大数据分析、汽车销售大数据分析第五阶段:Storm实时开发学习内容:Zookeeper、HBase、Storm实时数据学习目标:掌握Storm程序的开发及底层原理,具备开发基于Storm的实时计算程序的能力。完成目标:实时处理新数据和更新数据库,处理密集查询并行搜索处理大集合的数据。