回答数
3
浏览数
15958
我是深海
大数据工程师 = 系统工程 + 大规模数据处理 + 数据分析 + 机器学习 + 商业智能
大数据工程师首先是一个系统工程师,也是一个软件工程师。同时,他还得有一些特定的技能,会做大规模数据处理,比如当你的数据有PB量级甚至ZD量级时,你需要会Leverage云平台等,通过几千台机器并行处理,解决大规模数据处理的问题。
大数据工程师还和数据科学家有重叠,二者都要有很强的数据分析能力,比如会用Matlab,R,Python等。仅仅做简单的数据分析可能也不够,大数据工程师还得做机器学习模型,最终我们希望大数据工程师做到的是商业智能。
大数据工程师的最终的目的,是帮助公司提供更好的用户体验,做出最优决策,获取更多的利润。他的工作成果是帮助企业挖掘出数据里的价值,从而实现Data-driven decision making。在个性化、在线广告领域,大数据工程有巨大的商业价值,Yahoo,Facebook,Google的80%以上的收入都来源于广告。通常,大数据工程师要解决的问题是,当一个用户在网站上出现时,如何显示一个与该用户喜好最相关的广告,使他最有可能去点击,从而提高公司的广告收入,这些都是需要通过大数据分析和机器学习建模,帮助做决策。
如果你是New grad,面试官期望你熟练掌握一门面向对象的通用语言 (如Java)。如果你只会C++,进公司后可能还是得去熟悉Java,因为很多时候编程语言的选择是与所用框架相关的, 比如Hadoop就是用Java编写的,用C++写Hadoop的应用就不是很方便。
另外,熟悉一门脚本语言 ,如Python,Go. R和Matlab不认为是一个Decent的脚本语言。
对候选人更重要的要求是基本的程序设计素养。如果程序设计功底足够好,熟悉一个新语言就是一两周的事情,面试官可能会从他平时工作的项目里提炼一些问题,看你能不能找到合适的解决方案。
在我未来
【导语】近年来,大数据发展如火如荼,很多人都选择学习大数据专业或者转行大数据,大数据里又包含很多就业岗位,所以在进行岗位选择的时候,还是需要大家合理选择,为了帮助大家更好的进入大数据行业执业,下面就把2021年大数据工程师面试内容给大家进行一下具体介绍。
1、自我介绍
一般上来就是自我介绍,谈下工作经历和项目经验,面试官会根据你的项目经验对你进行技术面试。在自我介绍时,一定要抓住核心说,不要太啰嗦,尽量放大自己的价值,让面试官感受到你对工作的热情,以及以后对公司贡献的能力。
2、数仓开发知识技能
(1)Java是必问的,不过问的不深,把Javase部分吃透,足以应付Java部分的面试。
(2)Hadoop生态,Yarn、Zookeeper、HDFS这些底层原理要懂,面试经常被问。
(3)Mapreduce的shuffle过程这个也是面试被常问的。
(4)Hbase和HIve,搞大数据这些不懂真的说不过去。
(5)Mysql、Oracle和Postgres数据库操作要回,Sql要会写。
(6)linux操作系统,这个简单得命令必须要懂,会写shell脚本更好了。
(7)Kettle或Sqoop这种数据处理工具至少要会一个。8,数据仓库建模、数据模型的问题。
3、技术方面知识技能
(1)SparkSql和SparkStreaming,底层原理、内核、提交任务的过程等等,尽量深入内幕,这个经常会跟MapReduce作比较的。当然也要了解Storm和Flink,Flink这个建议要学会,以后用处会越来越广。
(2)Redis、Kafka、ElasticSearch这些都得懂原理,深入了解,会使用,会操作,会调优。
(3)impala和kylin这些尽量也要了解会用
(4)Python这个要是有能力,有精力,建议也要往深处学习,我目前正在自学中。
(5)集群的问题,包括一些简单的运维知识。
(6)大数据数据倾斜的问题,包括Spark JVM内存调优问题等等。
关于2021年大数据工程师面试内容,就给大家介绍到这里了,希望对大家能有所帮助,当然进入大数据行业,还需要大家在平时不断进行技能提升,这样才能更好的拥有一席之地。
操婊队长
只要数据量级大(或者是数据复杂度,或者是其他方面的量级大)到普通的处理方法无法处理地实际上都可以算作是大数据开发,只不过一般大数据开发目前招聘的很多都是做数据处理的。有如下几个方向:1)数据挖掘是大数据处理地一个方向,这里做数据挖掘要有一些统计学基础才能做,目前数据挖掘的方向其实不是很明确,和人工智能,机械学习也有一些关系,如果是做数据挖掘,基本的数据会由数据平台部或数据运维部门提供2)数据平台的开发(这里的平台开发在不同公司的内容又不一样,小公司可能是根据公司业务做一套完整的数据分析系统,大公司这个职位可能是一些开源组件的二次开发)3)大数据运维方向:比如hadoop,spark集群的运维,涉及到ha等内容4)大数据分析方向:有的公司会将职责细化,招聘一些专业的分析人员,去写hql或者是其它类sql来对数据进行分析最后,其实大数据平台相关工作的划分并不清晰,行业里没有统一标准,大公司小公司情况不同。关于技术方向更是用什么的都有,比如有的公司用spark,有的用impala,还有的用clickhouse等,最近flink也逐渐进入大家的视野。所以在找工作时应该要考虑的是自己的强项是什么,同时在选择工作时要考虑到这个工作在做了三五年后,从这家公司出来还能不能找到工作。我个人的建议是如果你会java,那不要脱离java(scala)语言去做大数据开发,也不要专业只去做数据分析工作,大数据行业目前仍旧有一些泡沫(个人看法),很多组件仍旧是基于java的,一旦脱离java语言本身,那源码阅读,二次开发都会有问题,同时生产环境自动化去执行一些代码也是需要语言支持的,或者最差的预估,如果大数据行业严重缩水(比如某些公司可以分析,可以挖掘的内容有限),可以随时转到java服务器开发方向。
优质工程师报名问答知识库