回答数
6
浏览数
15035
惨死
大数据开发工程师的基本职责-岗位职责
在学习、工作、生活中,很多情况下我们都会接触到岗位职责,明确岗位职责能让员工知晓和掌握岗位职责,能够最大化的进行劳动用工管理,科学的进行人力配置,做到人尽其才、人岗匹配。我们该怎么制定岗位职责呢?以下是我为大家整理的大数据开发工程师的基本职责-岗位职责,仅供参考,欢迎大家阅读。
职责:
1、参与大数据平台搭建以及项目技术架构。
2、数据分析,挖掘,模型具体的产品化;
3、根据产品需求,分析编写和制定大数据相关解决方案
岗位要求:
1、计算机相关专业本科以上学历,编程基础扎实,有2年以上大数据开发经验
2、熟悉Hadoop生态和体系架构,熟悉Flink、Spark,Hive等常用开源工具
3、熟悉Flume,kakfa,scribe等日志收集体系
4、熟悉主流数据库(Oracle、postgresql、Mysql、Sql Server)中的1种及以上,有较好的SQL性能调优经验
5、有数据仓库ETL经验者优先
6、有用户行为日志采集、海量数据处理、数据建模方面经验者优先
7、有持续学习的能力;喜欢开源软件,乐于知识分享;对工作认真负责;可以独立承担较大工作压力
职责:
1、数字货币领域数据统计分析,负责数字货币量化投资策略的设计、管理以及实际投资运作
2、与交易员对接,制定切实可行的的'策略测试计划,开展新策略模型的开发和验证
3、协助交易员进行交易、风险管理,并对实际交易结果进行量化的绩效分析,推动交易自动化
4、上级交办的其他工作
任职要求:
1、数学计算机金融专业毕业,有扎实的算法和机器学习的理论基础
2、有量化实盘交易经验,具备丰富的数学建模经验及较强的数据处理能力优先
3、对金融市场的价格波动有独特理解和深入的量化分析,具备一定对冲策略研究经验;
4、对数字货币领域感兴趣,结果导向;
5、有网页抓取和爬虫程序编写经验者优先。
职责:
1、大数据日志分析系统的设计,选型和开发;
2、配合各业务给予数据支持,对产品和运营数据总结和优化;
3、处理用户海量数据,提取、分析、归纳用户属性,行为等信息,完成分析结果;
4、发现并指出数据异常情况,分析数据合理性;
5、公司大数据基础架构平台的运维,保障数据平台服务的稳定性和可用性;
6、大数据基础架构平台的监控、资源管理、数据流管理;
7、基于数据分析的可预测的云平台弹性扩展解决方案。
任职要求:
1、日志分析数据系统实际经验;
2、3年以上互联网行业研发经验,有使用Hadoophivespark分析海量数据的能力;
3、掌握Hadoop、Flume,Kafka、Zookeeper、HBase、Spark的安装与调试;
4、熟悉大数据周边相关的数据库系统,关系型数据库和NoSQL。
5、掌握Linux操作系统的配置,管理及优化,能够独立排查及解决操作系统层的各类问题;
6、有良好的沟通能力,具备出色的规划、执行力,强烈的责任感,以及优秀的学习能力。
职责:
1、负责数据分析、加工、清理、处理程序的开发;
2、负责数据相关平台的搭建、维护和优化;
3、负责基于HadoopSparkHivekafka等分布式计算平台实现离线分析、实时分析的计算框架的开发;
岗位要求:
1、本科学历须211院校以上,硕士及以上学历不限院校,计算机软件及相关专业
2、熟悉Java和Scala语言、熟悉常用设计模式、具有代码重构意识;
3、熟练使用hadoop、hbase、Kafka、hive、spark、presto,熟悉底层框架和实现原理;
4、使用Spark Streaming和Spark SQL进行数据处理,并具有SPARK SQL优化经验;
5、需要有至少2年开发经验,有flink开发经验优先;
6、学习能力强,喜欢研究新技术,有团队观念,具备独立解决问题的能力。
职责:
1、负责大数据平台的基础环境搭建与性能优化,完成平台的构建与维护、实时流计算平台、分布式调度、可视化报表等平台的架构与研发;
2、对各种开源框架进行深入的代码剖析和优化;
3、参与大数据技术方案评审;
4、指导初中级大数据工程师工作;
岗位要求:
1、计算机相关专业全日制专科及以上学历,具有3年或以上的分布式计算平台研发工作经验;
2。对大数据相关组件:Hadoop、Spark、Hbase、Hive、Flink、Kafka、Flume等架构与底层实现有深入理解,具备相应的定制和研发能力,尤其需要精通Flink框架;
3。具备构建稳定的大数据基础平台的能力,具备数据收集、数据清洗、数据仓库建设、实时流计算等系统研发经验;
4。对技术有热情,有不错的数据思维和敏感度,有一定的数据分析能力优先,对深度学习、机器学习有一定的了解优先;
5。工作有计划性,责任心和执行能力强,具备高度的责任心、诚信的工作作风、优秀沟通能力及团队精神。
他的眼神说出他的心
作为大数据开发工程师,可以在以下几个方面从事工作:大数据开发:这是最主要的职业方向之一,主要负责开发和维护大数据平台、数据仓库、ETL等大数据相关的软件系统和工具。数据科学:这个方向需要深入了解数据挖掘、机器学习、深度学习、统计学等领域的知识,利用大数据分析技术解决业务问题。数据治理:负责数据质量、数据安全、数据标准化等方面的工作,确保数据的准确性、完整性、一致性和可信度。业务分析:通过对大数据的分析和挖掘,为企业提供决策支持,帮助企业制定战略和运营方案。产品管理:负责大数据相关产品的策划、设计、开发和运营,以满足用户需求。总之,大数据开发工程师可以在数据科学、数据治理、业务分析、产品管理等多个方向上发展,并有机会成为大数据架构师、数据科学家、数据治理专家、产品经理等职业。
哦也哦也哦买噶
从部分大数据开发工程师的招聘要求可见一斑,需掌握的技能包括但不限于如下几个方面:1、hadoopsparkhiveflink等常见离线和实时大数据平台架构,有相关大数据系统开发、维护和整合经验;2、编程基础扎实、动手实践能力强,至少熟练掌握一门开发语言(pythonjavagoscalac++等),熟悉hive sql使用;3、熟悉常见的大数据开发工作流,熟练掌握大数据接入、数据清洗、数据挖掘分析&数据可视化工具;4、了解常见的机器学习算法基本原理,熟悉安全攻防对抗、广告安全对抗等相关业务场景。
花花世界缺真心花花世界缺真爱
大数据工程师:分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务,在Linux系统上使用分布式编程模型,对海量数据,进行处理和分析,比如获取网站日志信息,清洗中间错误数据,想进一步了解大数据,可以网上搜下西安汇杰。
整天长发及腰你烦不烦
大数据开发工程师可以从事多个不同的岗位,因为这是一个广泛而不断扩大的行业。首先,大数据开发工程师可以在大型的数据隶属的公司和机构中任职,如电信、银行、金融、物流等行业的数据中心。其次,也可以转型成数据分析师、数据挖掘工程师、数据科学家等相关职位,深入了解数据统计、机器学习、人工智能等领域的知识和技能。此外,大数据开发工程师还可以成为独立或自主从业者,或者参与大数据学术研究、数学建模、软件应用等方面。不论是哪一种岗位,大数据开发工程师都需要不断更新自己的技能和知识,保持专业和技能上的竞争优势。
骚不起就矜持点
大数据工程师需要负责创建和维护数据分析基础架构,包括大数据架构的开发、构建、维护和测试等,还负责创建用于建模,挖掘,获取和验证数据集合等流程。
大数据工程师可以做大数据开发工作,开发,建设,测试和维护架构,负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。
大数据工程师可以做数据分析工作,收集,处理和执行统计数据分析,运用工具,提取、分析、呈现数据,实现数据的商业意义,需要业务理解和工具应用能力。
大数据工程师可以做数据挖掘工作,数据建模、机器学习和算法实现,商业智能,用户体验分析,预测流失用户等,需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。
大数据工程师可以做数据库开发及管理工作,设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等。
1、计算机编码能力:实际开发能力和大规模的数据处理能力是作为大数据工程师必须要掌握的能力,现在人们在社交网络上所产生的许多记录都是非结构化的数据,如何从这些毫无头绪的信息中提取有用数据呢,这就需要大数据工程师来做。
2、.大数据架构工具与组件:企业大数据框架的搭建,多是选择基于开源技术框架来实现的,这其中就包括Hadoop、Spark、Storm、Flink为主的一系列组件框架,及其生态圈组件。
3、数据仓库和ETL工具:数据仓库和ETL能力对于大数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL工具,比如StitchData或Segment都非常有用。
4、编程语言:编码与开发能力是大数据工程师的必备技能,要熟悉Python,CC++,Java,Perl,Golang或其它语言。
优质工程师报名问答知识库