回答数
3
浏览数
5324
深情的滋味
二、糖有氧氧化 葡萄糖的有氧氧化包括四个阶段。 ①糖酵解产生丙酮酸(2丙酮酸、 2ATP、2NADH) ②丙酮酸氧化脱羧生成乙酰CoA 2×(CO2、NADH) ③三羧酸循环 2×(2CO2、ATP、3NADH、FADH2) ④呼吸链氧化磷酸化 (NADH-----ATP) 三羧酸循环:乙酰CoA经一系列的氧化、脱羧,最终生成CO2、H2O、并释放能量的过程,又称柠檬酸循环、Krebs循环。 原核生物:①~④阶段在胞质中 真核生物:①在胞质中,②~④在线粒体中 1、丙酮酸脱羧生成乙酰CoA。此反应在真核细胞的线粒体基质中进行,这是连接糖酵解与TCA的中心环节。 1) 丙酮酸脱氢酶系:丙酮酸脱氢酶系是一个十分庞大的多酶体系,位于线粒体膜上,电镜下可见。 Eli丙酮酸脱氢酶复合体: 分子量:5×106,直径45nm,比核糖体稍大。 酶 辅酶 每个复合物亚基数 丙酮酸脱羧酶(E1) TPP 24 二氢硫辛酸转乙酰酶(E2) 硫辛酸 24 二氢硫辛酸脱氢酶(E3) FAD、NAD+ 12 此外,还需要CoA、Mg2+作为辅因子。这些肽链以非共价键结合在一起,在碱性条件下,复合体可以解离成相应的亚单位,在中性时又可以重组为复合体。所有丙酮酸氧化脱羧的中间物均紧密结合在复合体上,活性中间物可以从一个酶活性位置转到另一个酶活性位置,因此,多酶复合体有利于高效催化反应及调节酶在反应中的活性。 2) 反应步骤: (1)丙酮酸脱羧形成羟乙基-TPP (2)二氢硫辛酸乙酰转移酶(E2)使羟乙基氧化成乙酰基 (3)E2将乙酰基转给CoA,生成乙酰-CoA (4)E3氧化E2上的还原型二氢硫辛酸 (5)E3还原NAD+生成NADH 3) 丙酮酸脱氢酶系的活性调节:从丙酮酸到乙酰CoA是代谢途径的分支点,此反应体系受到严密的调节控制,此酶系受两种机制调节。 (1)可逆磷酸化的共价调节: 丙酮酸脱氢酶激酶(EA)(可被ATP激活) 丙酮酸脱氢酶磷酸酶(EB) 磷酸化的丙酮酸脱氢酶(无活性) 去磷酸化的丙酮酸脱氢酶(有活性) (2)别构调节:ATP、CoA、NADH是别构抑制剂。ATP抑制E1;CoA抑制E2;NADH抑制E3。 4) 能量变化:1分子丙酮酸生成1分子乙酰CoA,产生1分子NADH(3ATP)。 2、 三羧酸循环(TCA)的过程 TCA循环:每轮循环有2个C原子以乙酰CoA形式进入,有2个C原子完全氧化成CO2放出,分别发生4次氧化脱氢,共释放12ATP。 1) 反应步骤 (1)、 乙酰CoA+草酰乙酸→柠檬酸 柠檬酸合酶,TCA中第一个调节酶:受ATP、NADH、琥珀酰CoA、和长链脂肪酰CoA的抑制;受乙酰CoA、草酸乙酸激活。氟乙酰CoA可与草酰乙酸生成氟柠檬酸,抑制下一步反应的酶,据此,可以合成杀虫剂、灭鼠药。 (2)、 柠檬酸→异柠檬酸 由顺鸟头酸酶催化 (3)、 异柠檬酸氧化脱羧生成α-酮戊二酸和NADH 异柠檬酸脱氢酶,这是三羧酸循环中第一次氧化脱羧反应, TCA中第二个调节酶:Mg2+(Mn2+ )、NAD+和ADP可活化此酶,NADH和ATP可抑制此酶活性。细胞在高能状态:ATPADP、NADHNAD+比值高时,酶活性被抑制。线粒体内有二种异柠檬酸脱氢酶,一种以NAD+为电子受体,另一种以NADP+为受体。前者只在线粒体中,后者在线粒体和胞质中都有。 (4)、 α-酮戊二酸氧化脱羧生成琥珀酰CoA和NADH α-酮戊二酸脱氢酶系,TCA循环中的第三个调节酶:受NADH、琥珀酰CoA、Ca2+、ATP、GTP抑制,α-酮戊二酸脱氢酶系为多酶复合体,与丙酮酸脱氢酶系相似(先脱羧,后脱氢) (5)、 琥珀酰CoA生成琥珀酸和GTP 琥珀酰CoA合成酶(琥珀酸硫激酶),这是TCA中唯一的底物水平磷酸化反应,直接生成GTP。在高等植物和细菌中,硫酯键水解释放出的自由能,可直接合成ATP。在哺乳动物中,先合成GTP,然后在核苷二磷酸激酶的作用下,GTP转化成ATP。 (6)、 琥珀酸脱氢生成延胡索酸(反丁烯二酸)和FADH 琥珀酸脱氢酶是TCA循环中唯一嵌入线粒体内膜的酶。丙二酸是琥珀酸脱氢酶的竞争性抑制剂,可阻断三羧酸循环。 (7)、 延胡索酸水化生成L-苹果酸 延胡索酸酶具有立体异构特性,OH只加入延胡索酸双键的一侧,因此只形成L-型苹果酸。 (8)、 L-苹果酸脱氢生成草酰乙酸和NADH L-苹果酸脱氢酶,平衡有利于逆反应,但生理条件下,反应产物草酰乙酸不断合成柠檬酸,其在细胞中浓度极低,少于10-6molL,使反应向右进行。 2) TCA循环小结 (1)、总反应式: 丙酮酸 + 4NAD+ + FAD + GDP → 4NADH + FADH2 + GTP + 3CO2 + H2O 乙酰CoA + 3NAD+ + FAD + GDP → 3NADH + FADH2 + GTP + 2CO2 + H2O (2)、 一次底物水平的磷酸化、二次脱羧反应,三个调节位点,四次脱氢反应。 3个NADH、1个FADH2进入呼吸链 (3)、 三羧酸循环中碳骨架的不对称反应 同位素标记表明,乙酰CoA上的两个C原子在第一轮TCA上并没有被氧化。 被标记的羰基碳在第二轮TCA中脱去。在第三轮TCA中,两次脱羧,可除去最初甲基碳的50%,以后每循环一次,脱去余下甲基碳的50% 3) 一分子Glc彻底氧化产生的ATP数量(按NADH的PO=3,FADH2的为2来计算) (在肝脏中) 反应 酶 ATP消耗 产生ATP方式 ATP数量 合计 糖 酵 解 已糖激酶 1 -1 8 磷酸果糖激酶 1 -1 磷酸甘油醛脱氢酶 NADH呼吸链氧化磷酸化 2×3 磷酸甘油酸激酶 底物水平磷酸化 2×1 丙酮酸激酶 底物水平磷酸化 2×1 TCA 丙酮酸脱氢酶复合物 NADH 2×3 30 异柠檬酸脱氢酶 NADH 2×3 α-酮戊二酸脱氢酶复合物 NADH 2×3 琥珀酸脱氢酶 FADH2 2×2 苹果酸脱氢酶 NADH 2×3 琥珀酰CoA合成酶 底物水平磷酸化 2×1 净产生:38ATP 在骨骼肌、脑细胞中,净产生:36ATP 甘油磷酸穿梭,1个NADH生成2个ATP 苹果酸穿梭,1个NADH生成3个ATP (1)、 磷酸甘油穿梭机制: 磷酸二羟丙酮+NADH+H+→3-磷酸甘油+NAD+ 3-磷酸甘油进入线粒体,将2H交给FAD而生成FADH2,FADH2可传递给辅酶Q,进入呼吸链,产生2ATP(3-磷酸甘油脱氢酶的辅酶是FAD)。 (2)、 苹果酸穿梭机制: 胞液中NADH可经苹果酸酶催化,使草酰乙酸还原成苹果酸,再通过苹果酸-α-酮戊二酸载体转运,进入线粒体,由线粒体内苹果酸脱氢酶催化,生成NADH和草酰乙酸,NADH进入呼吸链氧化,生成3ATP。(苹果酸脱氢酶的辅酶是NAD+) 1分子Glc在肝、心中完全氧化,产生38ATP,在骨骼肌、神经系统组织中,产生36ATP。 4) 三羧酸循环的代谢调节 (1)、 柠檬酸合酶(限速酶):受ATP、NADH、琥珀酰CoA及脂酰CoA抑制。 受乙酰CoA、草酰乙酸激活 (2)、 异柠檬酸脱氢酶:NADH、ATP可抑制此酶,ADP可活化此酶,当缺乏ADP时就失去活性。 (3)、 α-酮戊二酸脱氢酶:受NADH和琥珀酰CoA抑制。 5) TCA的生物学意义 (1) 氧化提供能量。线粒体外的NADH,可通过3-磷酸甘油穿梭和苹果酸穿梭机制,运到线粒体内,经呼吸链再氧化,这两种机制在不同组织的细胞中起作用。 (2) TCA是生物体内其它有机物氧化的主要途径,如脂肪、氨基酸、糖 (3) TCA是物质代谢的枢纽。一方面,TCA是糖、脂肪、氨基酸等彻底氧化分解的共同途径;另一方面,循环中生成的草酰乙酸、α-酮戊二酸、柠檬酸、琥珀酰CoA和延胡索酸等又是合成糖、氨基酸、脂肪酸、卟啉等的原料,因而TCA将各种有机物的代谢联系起来。TCA是联系体内三大物质代谢的中心环节,为合成其它物质提供C架。 6) TCA的回补反应 三羧酸循环中间物的的回补:在TCA循环中,有些中间产物是合成其它物质的前体,如卟啉的主要碳原子来自琥珀酰CoA,Glu、Asp可以从α-酮戊二酸和草酰乙酸衍生而成,一旦草酰乙酸浓度下降,则会影响TCA循环,因此这些中间产物必须不断补充,以维持TCA循环。 产生草酰乙酸的途径有三个: (1)、 丙酮酸羧化酶催化丙酮酸生成草酰乙酸 丙酮酸羧化酶是一个调节酶,乙酰CoA可以增加其活性。需要生物素为辅酶 (2)、 磷酸烯醇式丙酮酸羧化激酶催化磷酸烯醇式丙酮酸转化成草酰乙酸 在脑、心脏中存在这个反应。 (3)、 Asp、Glu转氨可生成草酰乙酸和α-酮戊二酸 Ile、Val、Thr、Met也会形成琥珀酰CoA,最后生成草酰乙酸 附: 葡萄糖有氧氧化生成的ATP 反 应 辅酶 ATP 第一阶段 葡萄糖 6-磷酸葡萄糖 -1 6-磷酸果糖 1,6双磷酸果糖 -1 2*3-磷酸甘油醛 2*1,3-二磷酸甘油酸 NAD+ 2*3或2*2(详见) 2*1,3-二磷酸甘油酸 2*3-磷酸甘油酸 2*1 2*磷酸烯醇式丙酮酸 2*丙酮酸 2*1 第二阶段 2*丙酮酸 2*乙酰CoA NAD+ 2*3 第三阶段 2*异柠檬酸 2*α-酮戊二酸 NAD+ 2*3 2*α-酮戊二酸 2*琥珀酰CoA NAD+ 2*3 2*琥珀酰CoA 2*琥珀酸 2*1 2*琥珀酸 2*延胡索酸 FAD 2*2 2*苹果酸 2*草酰乙酸 NAD+ 2*3 净生成 38或36个ATP 3、磷酸戊糖途径 也称磷酸己糖支路,发生在胞质中。细胞内Glc的氧化分解,除通过糖酵解,三羧酸循环和发酵外,还能直接氧化分解。即反应开始,在G-6-P上的C2原子上直接氧化,通过一系列转化被分解,此为磷酸戊糖途径。 两个事实: ①用碘乙酸和氟化物抑制糖酵解(磷酸甘油醛脱氢酶)发现Glc的消耗并不因此而受影响,证明葡萄糖还有其它的分解途径 ②用14C分别标记Glc的C1和C6,然后分别测定14CO2生成量,发现C1标记的Glc比C6标记的Glc更快、更多地生成14CO2 ,如果糖酵解是唯一的`代谢途径,那么14C1和14C2生成14CO2的速度应该相同。 1)、 反应过程 Glc经磷酸戊糖途径氧化分解可分为两个阶段。 第一阶段:6-磷酸葡萄糖氧化脱羧生成5-磷酸核糖 第二阶段:磷酸戊糖分子重排,产生不同碳链长度的磷酸单糖 (1) 6-磷酸葡萄糖脱氢脱羧生成5-磷酸核酮糖 在此氧化脱羧阶段中,Glc经两次脱氢,一次脱羧,生成5-磷酸核酮糖及NADPH。6-磷酸葡萄糖脱氢酶是磷酸戊糖途径的调控酶,NADPH反馈抑制此酶活性。 (2) 磷酸戊糖异构生成5-磷酸核糖及5-磷酸木酮糖 (表异构酶)5-磷酸木酮糖产率:23; (异构酶) 5-磷酸核糖产率:13 (3) 磷酸戊糖通过转酮、转醛反应生成酵解途径的中间产物(F-6-P,3-磷酸甘油醛) 转酮反应:5-磷酸木酮糖将自身的二碳单位(羟乙酰基)转到5-磷酸核糖的C1上,生成3-磷酸甘油醛和7-磷酸景天庚酮糖。 转酮酶需TPP为辅酶,作用机理与丙酮酸脱氢酶中的TPP类似。 转醛反应:转醛酶将7-磷酸庚酮糖上的三碳单位(二羟丙酮基)转到3-磷酸甘油醛的C1上,生成4-磷酸赤鲜糖和6-磷酸果糖。 (4)转酮反应(转酮酶) 4-磷酸赤鲜糖接受另一分子5-磷酸木酮糖上的二碳单位(羟乙酰基),生成6-磷酸果糖和3-磷酸甘油醛
没有故事只有酒
第十二章 蛋白质的生物合成 蛋白质的生物合成过程,就是将DNA传递给mRNA的遗传信息,再具体地解译为蛋白质中氨基酸排列顺序的过程,这一过程被称为翻译(translation)。 一、蛋白质生物合成的条件。 生物体内的各种蛋白质都是生物体内利用约20种氨基酸为原料自行合成的。参与蛋白质生物合成的各种因素构成了蛋白质合成体系,该体系包括:① mRNA:作为蛋白质生物合成的模板,决定多肽链中氨基酸的排列顺序;② tRNA:搬运氨基酸的工具;③ 核糖体(又名核蛋白体):蛋白体生物合成的场所;④ 酶及其他蛋白质因子;⑤ 供能物质及无机离子。 (一)mRNA: 作为指导蛋白质生物合成的模板。mRNA中每三个相邻的核苷酸组成三联体,代表一个氨基酸的信息,此三联体就称为密码(coden)。共有64种不同的密码,即4×4×4=64。 遗传密码具有以下特点:① 连续性;② 简并性;③ 通用性;(但在线粒体或叶绿体中特殊)④ 方向性,即解读方向为5′→ 3′;⑤ 摆动性;⑥ 起始密码:AUG;终止密码:UAA、UAG、UGA。 (二)tRNA: 在氨酰-tRNA合成酶催化下,特定的tRNA可与相应的 氨基酸结合,生成氨酰-tRNA,从而携带氨基酸参与蛋白质的生物合成。 tRNA反密码环中部的三个核苷酸构成三联体,可以识别mRNA上相应的密码,此三联体就称为反密码子(anticoden)。 反密码对密码的识别,通常也是根据碱基互补原则,即A—U,G—C配对。但反密码的第一个核苷酸与第三核苷酸之间的配对,并不严格遵循碱基互补原则。如反密码第一个核苷酸为Ⅰ(次黄嘌呤),则可与A、U或C配对,如为U,则可与A或G配对,这种配对称为不稳定配对。 能够识别mRNA中5′端起动密码AUG的tRNA是一种特殊的tRNA,称为起动tRNA。在原核生物中,起动tRNA是一种携带甲酰蛋氨酸的tRNA,即tRNAifmet;而在真核生物中,起动tRNA是一种携带蛋氨酸的tRNA,即tRNAimet。 在原核生物和真核生物中,均存在另一种携带蛋氨酸的tRNA,识别非起动部位的蛋氨酸密码,AUG。 (三)rRNA和核糖体: 原核生物中的核糖体大小为70S,可分为30S小亚基和50S大亚基。小亚基由16SrRNA和21种蛋白质构成,大亚基由5SrRNA,23SRNA和35种蛋白质构成。 真核生物中的核糖体大小为80S,也分为40S小亚基和60S大亚基。小亚基由18SrRNA和30多种蛋白质构成,大亚基则由5S rRNA,28S rRNA和50多种蛋白质构成,在哺乳动物中还含有8 S rRNA。 核糖体的大、小亚基分别有不同的功能: 小亚基:可与mRNA、GTP和起动tRNA结合。 大亚基: (1)具有两个不同的tRNA结合点。A位(右)—— 受位或氨酰基位,可与新进入的氨基酰tRNA结合;P位(左)——给位或肽酰基位,可与延伸中的肽酰基tRNA结合。 (2)具有转肽酶活性:将给位上的肽酰基转移给受位上的氨基酰tRNA,形成肽键。 (3)具有GTPase活性,水解GTP,获得能量。 (4)具有起动因子、延长因子及释放因子的结合部位。 在蛋白质生物合成过程中,常常由若干核糖体结合在同一mRNA分子上,同时进行翻译,但每两个相邻核蛋白之间存在一定的间隔,形成念球状结构。由若干核糖体结合在一条mRNA上同时进行多肽链的翻译所形成的念球状结构称为多核糖体。 (四)起动因子(IF) 这是一些与多肽链合成起动有关的蛋白因子。原核生物中存在3种起动因子,分别称为IF1-3。在真核生物中存在9种起动因子(eIF)。其作用主要是促进核糖体小亚基与起动tRNA及模板mRNA结合。 (五)延长因子(EF) 这是一些与多肽链合成延伸有关的蛋白因子。原核生物中存在3种延长因子(EFTU,EFTS,EFG),真核生物中存在2种(EF1,EF2)。其作用主要促使氨基酰tRNA进入核糖体的受体,并可促进移位过程。 (六)释放因子(RF) 这是一些与多肽链合成终止有关的蛋白因子。原核生物中有4种,在真核生物中只有1种。其主要作用是识别终止密码,协助多肽链的释放。 (七)氨酰-tRNA合成酶 该酶存在于胞液中,与特异氨基酸的活化以及氨基酰tRNA的合成有关。 每种氨酰-tRNA合成酶对相应氨基酸以及携带氨基酸的数种tRNA具有高度特异性,这是保证tRNA能够携带正确的氨基酸对号入座的必要条件。 目前认为,该酶对tRNA的识别,是因为在tRNA的氨基酸臂上存在特定的识别密码,即第二套遗传密码。 (八)供能物质和无机离子 多肽链合成时,需ATP、GTP作为供能物质,并需Mg2+、K+参与。 氨基酸活化时需消耗2分子高能磷酸键,肽键形成时又消耗2分子高能磷酸键,故缩合一分子氨基酸残基需消耗4分子高能磷酸键。 二、蛋白质生物合成的过程 蛋白质生物合成过程包括三大步骤:①氨基酸的活化与搬运;②活化氨基酸在核糖体上的缩合;③多肽链合成后的加工修饰。 (一)氨基酸的活化与搬运 氨基酸的活化以及活化氨基酸与tRNA的结合,均由氨酰-tRNA合成酶催化完成。 在此反应中,特异的tRNA3’端CCA上的2’或3’位自由羟基与相应的活化氨基酸以酯键相连接,形成氨酰-tRNA,从而使活化氨基酸能够被搬运至核糖体上参与多肽链的合成。氨酰-tRNA的合成,可使氨基酸 ①活化;②搬运;③定位。
优质医学问答知识库